Euclid minus Meno is ME and In G Less than F and certainly contained in the set three point one four one five when |\/| is the \+/ {wazaazaw}

The

Re

ill 

not

Z

Pa

ke

of

Ch

Ar

Ti

St

Zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Zmoke z ch annell al rize
sun ward ly
warded
see
by
w
E



zzzzZzzhats entertain ment
Th E C ommon P E opl e Eh><hE

zzzzZzzhats entertain mentzzzzZzzhats entertain mentzzzzZzzhats entertain mentzzzzZzzhats entertain mentzzzzZzzhats entertain ment

Different images same image zats enterzainmenz


 






 


Τριγώνου γὰρ τοῦ ΑΒΓ τὸ ἀπὸ μιᾶς τῆς ΒΓ πλευρᾶς For let the square on one of the sides, BC, of triangle τετράγωνον ἴσον ἔστω τοῖς ἀπὸ τῶν ΒΑ, ΑΓ πλευρῶν τε- ABC be equal to the (sum of the) squares on the sides τραγώνοις· λέγω, ὅτι ὀρθή ἐστιν ἡ ὑπὸ ΒΑΓ γωνία. BA and AC. I say that angle BAC is a right-angle. ῎Ηχθω γὰρ ἀπὸ τοῦ Α σημείου τῇ ΑΓ εὐθείᾳ πρὸς ὀρθὰς For let AD have been drawn from point A at rightἡ ΑΔ καὶ κείσθω τῇ ΒΑ ἴση ἡ ΑΔ, καὶ ἐπεζεύχθω ἡ ΔΓ. angles to the straight-line AC [Prop. 1.11], and let AD ἐπεὶ ἴση ἐστὶν ἡ ΔΑ τῇ ΑΒ, ἴσον ἐστὶ καὶ τὸ ἀπὸ τῆς have been made equal to BA [Prop. 1.3], and let DC ΔΑ τετράγωνον τῷ ἀπὸ τῆς ΑΒ τετραγώνῳ. κοινὸν προ- have been joined. Since DA is equal to AB, the square σκείσθω τὸ ἀπὸ τῆς ΑΓ τετράγωνον· τὰ ἄρα ἀπὸ τῶν ΔΑ, on DA is thus also equal to the square on AB. † Let the ΑΓ τετράγωνα ἴσα ἐστὶ τοῖς ἀπὸ τῶν ΒΑ, ΑΓ τετραγώνοις. square on AC have been added to both. Thus, the (sum ἀλλὰ τοῖς μὲν ἀπὸ τῶν ΔΑ, ΑΓ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΔΓ· of the) squares on DA and AC is equal to the (sum of ὀρθὴ γάρ ἐστιν ἡ ὑπὸ ΔΑΓ γωνία· τοῖς δὲ ἀπὸ τῶν ΒΑ, the) squares on BA and AC. But, the (square) on DC is ΑΓ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΒΓ· ὑπόκειται γάρ· τὸ ἄρα ἀπὸ equal to the (sum of the squares) on DA and AC. For anτῆς ΔΓ τετράγωνον ἴσον ἐστὶ τῷ ἀπὸ τῆς ΒΓ τετραγώνῳ· gle DAC is a right-angle [Prop. 1.47]. But, the (square) ὥστε καὶ πλευρὰ ἡ ΔΓ τῇ ΒΓ ἐστιν ἴση· καὶ ἐπεὶ ἴση ἐστὶν on BC is equal to (sum of the squares) on BA and AC. ἡ ΔΑ τῇ ΑΒ, κοινὴ δὲ ἡ ΑΓ, δύο δὴ αἱ ΔΑ, ΑΓ δύο ταῖς For (that) was assumed. Thus, the square on DC is equal ΒΑ, ΑΓ ἴσαι εἰσίν· καὶ βάσις ἡ ΔΓ βάσει τῇ ΒΓ ἴση· γωνία to the square on BC. So side DC is also equal to (side) ἄρα ἡ ὑπὸ ΔΑΓ γωνίᾳ τῇ ὑπὸ ΒΑΓ [ἐστιν] ἴση. ὀρθὴ δὲ ἡ BC. And since DA is equal to AB, and AC (is) comὑπὸ ΔΑΓ· ὀρθὴ ἄρα καὶ ἡ ὑπὸ ΒΑΓ. mon, the two (straight-lines) DA, AC are equal to the ᾿Εὰν ἀρὰ τριγώνου τὸ ἀπὸ μιᾶς τῶν πλευρῶν τετράγωνον two (straight-lines) BA, AC. And the base DC is equal ἴσον ᾖ τοῖς ἀπὸ τῶν λοιπῶν τοῦ τριγώνου δύο πλευρῶν to the base BC. Thus, angle DAC [is] equal to angle τετραγώνοις, ἡ περιεχομένη γωνία ὑπὸ τῶν λοιπῶν τοῦ BAC [Prop. 1.8]. But DAC is a right-angle. Thus, BAC τριγώνου δύο πλευρῶν ὀρθή ἐστιν· ὅπερ ἔδει δεῖξαι.

THeze

Are

THe

THoze

https://docs.google.com

/spreadsheets/

d/1KtFGr7KRZAX

_qf-

MtGSlRbyDwB4

-

DuPKs0ee3bec9ZY

/

edit?usp=sharing

Comments